چکیده
در این مقاله روش جدیدی بر اساس یادگیری عمیق برای کدگشایی اطلاعات حسیِ حاصل از الکتروانسفالوگرامهایی (EEG) که به صورت غیرتهاجمی ثبت شدهاند، ارائه میدهیم. این روش را میتوان در رابطهای مغز و کامپیوتر (BCI) غیرفعال برای پیشبینی ویژگیهای یک محرک بصری که فرد مشاهده میکند، به کار برد و یا میتوان برای کنترل فعالانهی کاربردهای BCI از آن استفاده کرد. هر دو سناریو مورد آزمایش قرار گرفتند، بدین ترتیب که متوسط نرخ انتقال اطلاعات (ITR) برابر با 701 بیت بر دقیقه برای روش BCI غیرفعال به دست آمد و بهترین سوژه به ITR آنلاین برابر با 1237 بیت بر دقیقه دست یافت. علاوه بر این، امکان تشخیص 500000 محرک بصری مختلف بر اساس تنها 2 ثانیه از اطلاعات EEG با دقت تا 100% را میسر ساخت. هنگامی که این روش در یک BCI خودگام آسنکرون برای هجی کردن به کار برده شد، متوسط نرخ سودمندی برابر با 175 بیت بر دقیقه به دست آمد که متناظر با به طور متوسط 35 حرف بدون خطا در هر دقیقه است. از آنجایی که اطلاعاتی که این روش استخراج میکند، بیش از سه برابرِ سریعترین روش قبلی است، نشان میدهیم که سیگنالهای EEG اطلاعات بیشتری نسبت به مقداری که معمولا فرض میشود، انتقال میدهند. در نهایت یک اثر حداکثر مشاهده کردیم به طوری که محتوای اطلاعات در EEG از آن چیزی که برای کنترل BCI لازم است، فراتر میرود و بنابراین در این مورد بحث میکنیم که آیا تحقیقات BCI به نقطهای رسیدهاند که دیگر نمیتوان عملکرد کنترل BCI بصری غیرتهاجمی را به طور قابل توجهی بهبود بخشید یا خیر.
1-مقدمه
رابط مغز و کامپیوتر (BCI) وسیلهای است که سیگنالهای مغز را به سیگنالهای خروجی یک سیستم کامپیوتری تبدیل میکند. خروجی BCI عمدتا برای بهبود کارکردهای مختلف افراد دارای معلولیتهای حرکتی به کار برده میشود، به عنوان مثال برای کنترل یا برقراری ارتباط اندامهای مصنوعی [1]. در کنار استفاده از BCIهایی که امکان کنترل فعالانهی دستگاهها را به کاربر میدهد، BCIهای غیرفعالی نیز وجود دارند که به عنوان نوع دیگری از BCIها پذیرفته شدهاند و هدف آنها کنترل ارادی نیست....
میتوانید از لینک ابتدای صفحه، مقاله انگلیسی را رایگان دانلود فرموده و چکیده انگلیسی و سایر بخش های مقاله را مشاهده فرمایید