Skip Navigation Linksلیست مقالات ترجمه شده / مقالات ترجمه شده مهندسی كامپيوتر /

عنوان ترجمه شده مقاله: بهینه ساز گرگ خاکستری

مقاله به همراه ترجمه درباره بهینه ساز گرگ خاکستری همراه با ترجمه فارسی و دانلود رایگان مقاله انگلیسی
Abstract

This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, encircling prey, and attacking prey, are implemented. The algorithm is then benchmarked on 29 well-known test functions, and the results are verified by a comparative study with Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Differential Evolution (DE), Evolutionary Programming (EP), and Evolution Strategy (ES). The results show that the GWO algorithm is able to provide very competitive results compared to these well-known meta-heuristics. The paper also considers solving three classical engineering design problems (tension/compression spring, welded beam, and pressure vessel designs) and presents a real application of the proposed method in the field of optical engineering. The results of the classical engineering design problems and real application prove that the proposed algorithm is applicable to challenging problems with unknown search spaces

چکیده

در این مقاله یک رویکرد فراابتکاری جدید به نام  بهینه ساز گرگ خاکستری" (GWO) ارائه می­گردد که از گرگ­ های خاکستری (Canis lupus) الهام گرفته است. الگوریتم GWO از سلسله مراتب رهبری و مکانیزم شکار گرگ خاکستری در طبیعت تقلید می­ کند. چهار نوع گرگ خاکستری بنام آلفا، بتا، دلتا و امگا برای شبیه سازی سلسله مراتب رهبری استفاده می­شوند. علاوه بر این، سه مرحله اصلی شکار، جستجو برای طعمه، محاصره و حمله به شکار، اجرا می­شود. سپس الگوریتم بر روی 29 تابع تست معروف تطبیق داده می­شود و نتایج توسط یک مطالعه مقایسه­ای با بهینه سازی ازحام ذرات (PSO)، الگوریتم جستجوی گرانشی (GSA)، تکامل دیفرانسیلی (DE)، برنامه ریزی تکاملی (EP) و استراتژی تکامل (ES) تایید می­گردند. نتایج نشان می­دهد که الگوریتم GWO قادر به ارائه نتایج بسیار رقابتی نسبت به این فرایندهای فراابتکاری است. همچنین این مقاله به حل سه مسئله کلاسیک در زمینه طراحی مهندسی (تنش / فشار، پرتوی جوشی و طراحی­های مخزن تحت فشار) پرداخته و کاربرد واقعی روش پیشنهادی در زمینه مهندسی اپتیک را ارائه می­دهد. نتایج مسائل طراحی مهندسی کلاسیک و کاربرد واقعی، نشان می­دهند که الگوریتم پیشنهادی برای مسائل چالش برانگیز با فضاهای جستجو ناشناخته قابل استفاده است.

1-مقدمه

تکنیک­های بهینه سازی فراابتکاری در طول دو دهه گذشته بسیار محبوب بوده ­اند. بعضی از آنها مانند الگوریتم ژنتیک (GA) [1]، بهینه سازی کلونی مورچه­ ها (ACO) [2] و بهینه سازی ازدحام ذرات (PSO) [3] نه تنها در میان دانشمندان کامپیوتر، بلکه در میان دانشمندان زمینه­ های مختلف، به طور شگفت انگیزی شناخته شده­ اند. علاوه بر تعداد زیادی از کارهای تئوری، چنین تکنیک­ های بهینه سازی در زمینه­ های مختلف مطالعه مورد استفاده قرار گرفته ­اند. در اینجا سوالی مطرح می­شود که چرا فرایندهای فراابتکاری به طور قابل توجهی رایج شده­اند. پاسخ به این سوال را می­توان در چهار دلیل عمده خلاصه کرد: سادگی، انعطاف پذیری، مکانیزم بدون استنتاج و اجتناب از بهینه­ های محلی.

اولا، فرایندهای فراابتکاری نسبتا ساده هستند. آنها عمدتا از مفاهیم بسیار ساده الهام گرفته ­اند. الهامات معمولا مربوط به پدیده­های فیزیکی، رفتار حیوانات و یا مفاهیم تکاملی می­باشند. این سادگی، دانشمندان کامپیوتر را قادر می­سازد تا مفاهیم طبیعی مختلفی را شبیه سازی کنند، فرایندهای فراابتکاری جدیدی ارائه دهند، دو یا چند فراابتکاری را پیوند دهند، یا فراابتکاری ­های کنونی را بهبود بخشند. علاوه بر این، سادگی به سایر دانشمندان کمک می­کند تا سریعا فراابتکاری را بیاموزند و آنها را به مسائل خود اعمال کنند....

 


موسسه ترجمه البرز اقدام به ترجمه مقاله " مهندسی فناوری اطلاعات " با موضوع " بهینه ساز گرگ خاکستری " نموده است که شما کاربر عزیز می توانید پس از دانلود رایگان مقاله انگلیسی و مطالعه ترجمه چکیده و بخشی از مقدمه مقاله، ترجمه کامل مقاله را خریداری نمایید.
عنوان ترجمه فارسی
بهینه ساز گرگ خاکستری
نویسنده/ناشر/نام مجله :
Advances in Engineering Software
سال انتشار
2014
کد محصول
1011739
تعداد صفحات انگليسی
16
تعداد صفحات فارسی
41
قیمت بر حسب ریال
1,265,000
نوع فایل های ضمیمه
Pdf+Word
حجم فایل
8 مگا بایت
تصویر پیش فرض


این مقاله ترجمه شده را با دوستان خود به اشتراک بگذارید
سایر مقالات ترجمه شده مهندسی فناوری اطلاعات , مهندسی كامپيوتر را مشاهده کنید.
کاربر عزیز، بلافاصله پس از خرید مقاله ترجمه شده مقاله ترجمه شده و با یک کلیک می توانید مقاله ترجمه شده خود را دانلود نمایید. مقاله ترجمه شده خوداقدام نمایید.
جهت خرید لینک دانلود ترجمه فارسی کلیک کنید
جستجوی پیشرفته مقالات ترجمه شده
برای کسب اطلاعات بیشتر، راهنمای فرایند خرید و دانلود محتوا را ببینید
هزینه این مقاله ترجمه شده 1265000 ریال بوده که در مقایسه با هزینه ترجمه مجدد آن بسیار ناچیز است.
اگر امکان دانلود از لینک دانلود مستقیم به هر دلیل برای شما میسر نبود، کد دانلودی که از طریق ایمیل و پیامک برای شما ارسال می شود را در کادر زیر وارد نمایید


این مقاله ترجمه شده مهندسی فناوری اطلاعات در زمینه کلمات کلیدی زیر است:



Grey Wolf Optimizer

تاریخ انتشار در سایت: 2018-01-11
جستجوی پیشرفته مقالات ترجمه شده
نظرتان در مورد این مقاله ترجمه شده چیست؟

ثبت سفارش جدید