Skip Navigation Linksلیست مقالات ترجمه شده / مقالات ترجمه شده مهندسی كامپيوتر /

عنوان ترجمه شده مقاله: الگوریتم کاهش بعد جمعی ( ازدحامی یا گروهی) ذره برای خوشه بندی ابعاد بالا

الگوریتم خوشه بندی بهینه سازی جمعی ذره PSO می تواند نتایج دسته یا خوشه بندی فشرده تری را نسبت به الگوریتم خوشه بندی میانگین K سنتی تولید کند
Abstract

The Particle Swarm Optimization (PSO) clustering algorithm can generate more compact clustering results than the traditional K-means clustering algorithm. However, when clustering high dimensional datasets, the PSO clustering algorithm is notoriously slow because its computation cost increases exponentially with the size of the dataset dimension. Dimensionality reduction techniques offer solutions that both significantly improve the computation time, and yield reasonably accurate clustering results in high dimensional data analysis. In this paper, we introduce research that combines different dimensionality reduction techniques with the PSO clustering algorithm in order to reduce the complexity of high dimensional datasets and speed up the PSO clustering process. We report significant improvements in total runtime. Moreover, the clustering accuracy of the dimensionality reduction PSO clustering algorithm is comparable to the one that uses full dimension space

چکیده

الگوریتم خوشه بندی بهینه سازی جمعی ذره PSO می تواند نتایج دسته یا خوشه بندی فشرده تری را نسبت به الگوریتم خوشه بندی میانگین Kسنتی تولید می کند. در عین حال، زمان خوشه بندی مجموعه داده های بعد بالا، الگوریتم خوشه بندی PSO به شدت کند عمل می کند زیرا هزینه محاسبات آن به طور نمایی با اندازه بعد مجموعه داده ها افزایش می یابد. روش های کاهش بعد، جواب و راه حل هایی را پیشنهاد می دهد که هم زمان محاسبات را به طور چشم گیری بهبود می بخشد و هم نتایج خوشه بندی دقیق و صحیح منطقی را در انالیز داده های ابعاد بالا در بر دارد. در این مقاله، تحقیقی را معرفی می کنیم که رو شهای کاهش بعد متفاوتی را با الگوریتم خوشه بندی PSO تلفیق و ترکیب می کند تا پیچیدگی مجموعه داده های با ابعاد بالا را کاهش دهد و فرایند خوشه بندی PSO را سرعت بخشد. ما پیشرفت های چشم گیری را در زمان کلی اجرای انالیز گزار می کنیم. به علاوه، صحت خوشه بندی الگوریتم خوشه بندی PSO کاهش بعد با موردی که از کل فضای ابعاد استفاده می کند قابل مقایسه است.

1-مقدمه

خوشه بندی مجموعه داده های بعد بالا، فرایندی است که در بسیاری از حوزه های کاربردی مورد نیاز است. به دلیل این که الگوریتم های سنتی خوشه بندی داده ها در زمان استفاده از مجموعه داده های ابعاد بالا، بیشتر تمایل به بیاس یا سوگرایی در مقابل مقدار بهینه محلی دارند، بهینه سازی ازدحامی ذره PSO برای حل مسائل خوشه بندی داده در سال های اخیر استفاده شده است. بسیاری از محققان، مشخص کرده اند که در زمان به کار گیری توانایی بهینه الگوریتم PSO، و زمان کافی داده شده، PSO نتیجه خوشه بندی فشرده تری را از داده های ابعادی نسبت به الگوریتم خوشه بندی میانگین – K ایجاد می کند...


موسسه ترجمه البرز اقدام به ترجمه مقاله " مهندسی فناوری اطلاعات " با موضوع " الگوریتم کاهش بعد جمعی ( ازدحامی یا گروهی) ذره برای خوشه بندی ابعاد بالا " نموده است که شما کاربر عزیز می توانید پس از دانلود رایگان مقاله انگلیسی و مطالعه ترجمه چکیده و بخشی از مقدمه مقاله، ترجمه کامل مقاله را خریداری نمایید.
عنوان ترجمه فارسی
الگوریتم کاهش بعد جمعی ( ازدحامی یا گروهی) ذره برای خوشه بندی ابعاد بالا
نویسنده/ناشر/نام مجله :
IEEE Swarm Intelligence Symposium
سال انتشار
2008
کد محصول
1009298
تعداد صفحات انگليسی
6
تعداد صفحات فارسی
14
قیمت بر حسب ریال
841,500
نوع فایل های ضمیمه
Pdf+Word
حجم فایل
364 کیلو بایت
تصویر پیش فرض


این مقاله ترجمه شده را با دوستان خود به اشتراک بگذارید
سایر مقالات ترجمه شده مهندسی فناوری اطلاعات , مهندسی كامپيوتر را مشاهده کنید.
کاربر عزیز، بلافاصله پس از خرید مقاله ترجمه شده مقاله ترجمه شده و با یک کلیک می توانید مقاله ترجمه شده خود را دانلود نمایید. مقاله ترجمه شده خوداقدام نمایید.
جهت خرید لینک دانلود ترجمه فارسی کلیک کنید
جستجوی پیشرفته مقالات ترجمه شده
برای کسب اطلاعات بیشتر، راهنمای فرایند خرید و دانلود محتوا را ببینید
هزینه این مقاله ترجمه شده 841500 ریال بوده که در مقایسه با هزینه ترجمه مجدد آن بسیار ناچیز است.
اگر امکان دانلود از لینک دانلود مستقیم به هر دلیل برای شما میسر نبود، کد دانلودی که از طریق ایمیل و پیامک برای شما ارسال می شود را در کادر زیر وارد نمایید


این مقاله ترجمه شده مهندسی فناوری اطلاعات در زمینه کلمات کلیدی زیر است:






Particle swarm optimization
Clustering algorithms
Frequency
Approximation algorithms

تاریخ انتشار در سایت: 2016-11-15
جستجوی پیشرفته مقالات ترجمه شده
نظرتان در مورد این مقاله ترجمه شده چیست؟

ثبت سفارش جدید