Skip Navigation Linksلیست مقالات ترجمه شده / مقالات ترجمه شده مهندسی كامپيوتر /

عنوان ترجمه شده مقاله: الگوریتم‌های یادگیری تقویتی ازدحام، بر مبنای بهینه‌سازی ازدحام ذرات

در این مقاله، روش ‌هایی را برای مبادله‌ ی اطلاعات و آن ‌هم بر مبنای معادلات بروز رسانی در بهینه‌ سازی ازدحام ذرات ارائه می ‌دهیم
 Abstract

In ordinary reinforcement learning algorithms, a single agent learns to achieve a goal through many episodes. If a learning problem is complicated, it may take much computation time to acquire the optimal policy. Meanwhile, for optimization problems, population-based methods such as particle swarm optimization have been recognized that they are able to find rapidly the global optimal solution for multi-modal functions with wide solution space. We recently proposed reinforcement learning algorithms in which multiple agents are prepared and they learn through not only their respective experiences but also exchanging information among them. In these algorithms, it is important how to design a method of exchanging the information. This paper proposes some methods of exchanging the information based on the update equations of particle swarm optimization. The proposed algorithms using these methods are applied to a shortest path problem, and their performance is compared through numerical experiments

چکیده

در الگوریتم ‌های یادگیری تقویتی معمول، یک عامل تکی اقدام به یادگیری نموده تا از طریق اپیزود های (بخش‌ ها) زیاد به یک هدف دست پیدا نماید. در صورتی که مسئله ‌ی یادگیری پیچیده باشد، ممکن است به زمان محاسباتی زیادی به منظور به دست آوردن یک سیاست بهینه نیاز بوده و در عین حال به منظور بهینه‌ سازی مسائل، روش‌ های مبتنی بر جمعیت، مانند بهینه‌ سازی ازدحام ذرات را باید تشخیص داد به طوری که بتوانند راه کار سراسری بهینه ‌ای را برای توابع چند مدله و آن‌هم با فضای راه‌حل گسترده پیدا نمایند. اخیراً، ما اقدام به ارائه ‌ی الگوریتم‌ های یادگیری تقویتی نموده‌ ایم که در آن، از چندین عامل استفاده شده است و این عوامل، نه تنها از طریق تجارب گذشته، بلکه از طریق مبادله‌ ی اطلاعات در بین خودشان به یادگیری می‌ پردازند. در این الگوریتم‌ ها، چگونگی طراحی یک مدل برای مبادله ‌ی اطلاعات ضروری می‌ باشد. در این مقاله، روش ‌هایی را برای مبادله‌ ی اطلاعات و آن ‌هم بر مبنای معادلات بروز رسانی در بهینه‌ سازی ازدحام ذرات ارائه می ‌دهیم. الگوریتم‌ های پیشنهادی که از این متدها استفاده می‌ کنند بر روی مسئله‌ ی کوتاه‌ ترین مسیر بکار گرفته شده و کارائی آن‌ ها به وسیله‌ ی تجارب عددی مورد مقایسه قرار می ‌گیرد.

1-مقدمه

در الگوریتم ‌های یادگیری تقویتی معمول، یک عامل تکی اقدام به یادگیری نموده تا از طریق اپیزود های (بخش‌ ها) زیاد به یک هدف دست پیدا نماید. در صورتی که مسئله‌ی یادگیری پیچیده باشد، ممکن است به زمان محاسباتی زیادی به منظور به دست آوردن یک سیاست بهینه نیاز می ‌باشد. ضمناً به منظور بهینه ‌سازی مسائل، روش‌ های مبتنی بر جمعتی، مانند الگوریتم ‌های ژنتیک و بهینه‌ سازی ازدحام ذرات [2] می‌ توانند راهکار های بهینه ‌ی سراسری را به شکلی سریع برای توابع چند مدله و آن‌ هم در یک فضای راه کار گسترده پیدا کنند. انتظار می ‌رود که با معرفی مفهوم روش‌ های مبتنی بر جمعیت در داخل الگوریتم‌ های یادگیری تقویتی، سیاست ‌های بهینه‌ ای را بتوان سریعاً پیدا کرد...


موسسه ترجمه البرز اقدام به ترجمه مقاله " مهندسی فناوری اطلاعات " با موضوع " الگوریتم‌های یادگیری تقویتی ازدحام، بر مبنای بهینه‌سازی ازدحام ذرات " نموده است که شما کاربر عزیز می توانید پس از دانلود رایگان مقاله انگلیسی و مطالعه ترجمه چکیده و بخشی از مقدمه مقاله، ترجمه کامل مقاله را خریداری نمایید.
عنوان ترجمه فارسی
الگوریتم‌های یادگیری تقویتی ازدحام، بر مبنای بهینه‌سازی ازدحام ذرات
نویسنده/ناشر/نام مجله :
Systems, Man and Cybernetics. IEEE International Conference
سال انتشار
2008
کد محصول
1008479
تعداد صفحات انگليسی
6
تعداد صفحات فارسی
19
قیمت بر حسب ریال
841,500
نوع فایل های ضمیمه
Pdf+Word
حجم فایل
611 کیلو بایت
تصویر پیش فرض


این مقاله ترجمه شده را با دوستان خود به اشتراک بگذارید
سایر مقالات ترجمه شده مهندسی فناوری اطلاعات , مهندسی كامپيوتر را مشاهده کنید.
کاربر عزیز، بلافاصله پس از خرید مقاله ترجمه شده مقاله ترجمه شده و با یک کلیک می توانید مقاله ترجمه شده خود را دانلود نمایید. مقاله ترجمه شده خوداقدام نمایید.
جهت خرید لینک دانلود ترجمه فارسی کلیک کنید
جستجوی پیشرفته مقالات ترجمه شده
برای کسب اطلاعات بیشتر، راهنمای فرایند خرید و دانلود محتوا را ببینید
هزینه این مقاله ترجمه شده 841500 ریال بوده که در مقایسه با هزینه ترجمه مجدد آن بسیار ناچیز است.
اگر امکان دانلود از لینک دانلود مستقیم به هر دلیل برای شما میسر نبود، کد دانلودی که از طریق ایمیل و پیامک برای شما ارسال می شود را در کادر زیر وارد نمایید


این مقاله ترجمه شده مهندسی فناوری اطلاعات در زمینه کلمات کلیدی زیر است:




Swarm Reinforcement Learning Algorithms Based on Particle Swarm Optimization

تاریخ انتشار در سایت: 2016-06-29
جستجوی پیشرفته مقالات ترجمه شده
نظرتان در مورد این مقاله ترجمه شده چیست؟

ثبت سفارش جدید