Skip Navigation Linksلیست مقالات ترجمه شده / مقالات ترجمه شده مهندسی كامپيوتر /

عنوان ترجمه شده مقاله: تشخیص فیشینگ بر مبنای روش داده کاویِ دستی بندی انجمنی

پروسه ی فیشینگ وب سایت را می توان یکی از چالش های امنیتی مهم برای انجمن های آنلاین دانست، چرا که در چنین جوامعی، روزانه با حجم زیادی از تراکنش ها روبرو هستیم که به صورت آنلاین صورت می گیرند.

Abstract

Website phishing is considered one of the crucial security challenges for the online community due to the massive numbers of online transactions performed on a daily basis. Website phishing can be described as mimicking a trusted website to obtain sensitive information from online users such as usernames and passwords. Black lists, white lists and the utilisation of search methods are examples of solutions to minimize the risk of this problem. One intelligent approach based on data mining called Associative Classification (AC) seems a potential solution that may effectively detect phishing websites with high accuracy. According to experimental studies, AC often extracts classifiers containing simple ‘‘If-Then’’ rules with a high degree of predictive accuracy. In this paper, we investigate the problem of website phishing using a developed AC method called Multi-label Classifier based Associative Classification (MCAC) to seek its applicability to the phishing problem. We also want to identify features that distinguish phishing websites from legitimate ones. In addition, we survey intelligent approaches used to handle the phishing problem. Experimental results using real data collected from different sources show that AC particularly MCAC detects phishing websites with higher accuracy than other intelligent algorithms. Further, MCAC generates new hidden knowledge (rules) that other algorithms are unable to find and this has improved its classifiers predictive performance

چکیده

 پروسه ی فیشینگ وب سایت  را می­توان یکی از چالش های امنیتی مهم برای انجمن های آنلاین دانست، چرا که در چنین جوامعی، روزانه با حجم زیادی از تراکنش ها روبرو هستیم که به صورت آنلاین صورت می­گیرند. فیشینگ وب سایت را میتوان به عنوان تقلید از یک وب سایت متعبر تشریح کرد با این هدف که اطلاعاتی حساس اعم از نام کاربری و رمز عبور را از کاربران به سرقت برد. لیست های سیاه، لیست های سفید و بکار گیری متد های جستجو، مثال هایی از راه حل هایی برای کمینه سازی ریسک این مسئله می­باشند. یک روش هوشمندانه که بر مبنای داده کاوی می­باشد، دسته بندی انجمنی(AC) نام دارد که می­تواند به صورت کارآمد، فیشینگ وب سایت را با میزان صحت بالایی تشخیص دهد. بر اساس مطالعات تجربی، AC میتواند دسته بند هایی که شامل قوانین "اگر...سپس" هستند را استخراج و با میزان صحت بالایی آنها را پیش بینی سازد. در این مقاله، ما این مسئله را با استفاده از متد AC که دسته بند چند برچسبه بر مبنای دسته بندی مشارکتی یا انجمنی (MCAC) نام دارد ارائه خواهیم داد. همچین قصد داریم ویژگی هایی که بین وب سایت های فیشینگ با وب سایت های قانونی تمایز قائل میشود را نیز بدست آوریم. علاوه بر این، قصد داریم روش های هوشمندی که برای مدیریت مسائل فیشینگ وجود دارد را نیز بررسی کنیم. نتایج آزمایشی با استفاده از داده های واقعی جمع آوری شده از منابع مختلف  نشان داده است که AC و به طور خاص MCAC میتواند وب سایت های فیشینگ را با میزان صحت بالایی نسبت به سایر الگوریتم های هوشمند تشخیص دهد. علاوه بر این، MCAC میتواند دانش مخفی جدیدی را ایجاد کند که سایر الگوریتم ها قادر به یافتن آن نیستند و این باعث بهبود کارائی پیش بینی دسته بند ها شده است.

واژگان کلیدی: دسته بندی، داده کاوی، فیشینگ وب سایت، امنیت اینترنت

1-مقدمه

امروزه، اینترنت نه تنها برای کاربران خاص، بلکه برای سازمان هایی که پروسه های شغلی شان را به صورت آنلاین انجام می­دهند ضرورت و اهمیت پیدا کرده است. بسیاری از سازمان ها، مبادلات و فروش سرویس ها و خدمات خود را به صورت آنلاین ارائه میدهند(Liu,Ye 2001). با این حال، کاربران اینترنتی ممکن است در معرض تهدید های عمده ی آنلاینی قرار گیرند که ممکن است آسیب های مالی، سرقت هویت و از دست دادن اطلاعات را برای آنها به همراه داشته باشد. بنابراین، متناسب بودن اینترنت به عنوان یک کانال برای مبادلات تجاری، امری سؤال برانگیز و چالش برانگیز است.

فیشینگ را می­توان نوعی تهدید آنلاین تعریف کرد که به عنوان بخشی از مداخله در یک وب سایت معتبر و با هدف بدست آوردن اطلاعات خصوصی کاربران مانند نام کاربری، رمز عبور، شماره های امنیتی اجتماعی مطرح می­شود. وب سایت های فیشینگ، به وسیله ی افرادی سود جو ایجاد شده تا این هدف که وب سایت های معتبر را مورد تقلید قرار دهند. این وب سایت ها دارای سطوح بالایی از تشابه با وب سایت های اصلی بوده با این هدف که بتواند کاربران را فریب دهند. گزارشی که توسط  شرکت گارتنر منتشر شده است نشان داده است که حملات فیشینگ به سرعت در حال رشد هستند. همچنین این شرکت تخمین زده است که سرقت هایی که به وسیله ی حملات فیشینگ صورت میگیرد، سالیانه حدود 2.8 میلیارد دلار به بانک ها و شرکت های کارت های اعتباری در ایالات متحده خسارت وارد می­کند. در سال 2011 میلادی، ندیر واحد تجاری-تکنولوژیک-امنیتی سیسکو، نگرانی های خود را در این مورد منتشر کرد که حملات اصلی امروزی، بر روی دسترسی به حساب های مالی شرکت هایی که دارای اطلاعات مالی حیاتی هستند متمرکز است....


موسسه ترجمه البرز اقدام به ترجمه مقاله " مهندسی فناوری اطلاعات " با موضوع " تشخیص فیشینگ بر مبنای روش داده کاویِ دستی بندی انجمنی " نموده است که شما کاربر عزیز می توانید پس از دانلود رایگان مقاله انگلیسی و مطالعه ترجمه چکیده و بخشی از مقدمه مقاله، ترجمه کامل مقاله را خریداری نمایید.
عنوان ترجمه فارسی
تشخیص فیشینگ بر مبنای روش داده کاویِ دستی بندی انجمنی
نویسنده/ناشر/نام مجله :
Expert Systems with Applications
سال انتشار
2014
کد محصول
1001716
تعداد صفحات انگليسی
12
تعداد صفحات فارسی
35
قیمت بر حسب ریال
1,331,000
نوع فایل های ضمیمه
Pdf+Word
حجم فایل
881 کیلو بایت
تصویر پیش فرض


این مقاله ترجمه شده را با دوستان خود به اشتراک بگذارید
سایر مقالات ترجمه شده مهندسی فناوری اطلاعات , مهندسی كامپيوتر را مشاهده کنید.
کاربر عزیز، بلافاصله پس از خرید مقاله ترجمه شده مقاله ترجمه شده و با یک کلیک می توانید مقاله ترجمه شده خود را دانلود نمایید. مقاله ترجمه شده خوداقدام نمایید.
جهت خرید لینک دانلود ترجمه فارسی کلیک کنید
جستجوی پیشرفته مقالات ترجمه شده
برای کسب اطلاعات بیشتر، راهنمای فرایند خرید و دانلود محتوا را ببینید
هزینه این مقاله ترجمه شده 1331000 ریال بوده که در مقایسه با هزینه ترجمه مجدد آن بسیار ناچیز است.
اگر امکان دانلود از لینک دانلود مستقیم به هر دلیل برای شما میسر نبود، کد دانلودی که از طریق ایمیل و پیامک برای شما ارسال می شود را در کادر زیر وارد نمایید


این مقاله ترجمه شده مهندسی فناوری اطلاعات در زمینه کلمات کلیدی زیر است:





Classification
Data mining
Forged websites
Phishing
Internet security

تاریخ انتشار در سایت: 2014-08-17
جستجوی پیشرفته مقالات ترجمه شده
نظرتان در مورد این مقاله ترجمه شده چیست؟

ثبت سفارش جدید