چکیده
پردازش سریع تصاویر سنجش از دور (RS) در بسیاری از نظارت های بلادرنگ مقیاس بزرگ ضروری است، مانند نظارت هواشناسی و هشدار فاجعه طبیعی. با این حال، هزینه محاسبه RS اغلب گران است، روشهای پردازش RS سنتی نمی توانند زمان مورد نیاز نظارت پویا را تامین کنند. خوشبختانه، محاسبات ابری نه تنها سرویس موثر برای مدیریت داده ها فراهم می کند، بلکه یک راه مناسب برای اجرای محاسبات RS ارائه می دهد. لازم است تا سرویس پردازش RS سریع را در یک معماری محاسبات ابری یکپارچه ادغام کنیم. معماری می تواند به کاربران سرویس پردازش تصویر RS سریع یکپارچه از طریق مدیریت موثر داده های بزرگ و پردازش موازی توزیع شده ارائه کند. این مقاله به بررسی روش های پردازش سریع و استراتژی برای تصاویر RS بر اساس محاسبات ابری میپردازد. به منظور مقایسه با دیگر نمونه های محاسباتی، ما طبقه بندی حداکثر احتمال (MLC) را به عنوان الگوریتم آزمایش و خوشه فاصله ماهالانوبیس (MDC) را به عنوان الگوریتم تایید برای اجرای مقایسه انتخاب کرده ایم. در این آزمایشات، ما هزینه محاسبات پردازش RS را در سه پارادایم محاسبات (مستقل، MPI، و MapReduce) مقایسه کردیم. از نتایج آزمایشی فشرده، پی بردیم که پردازش RS بر اساس محاسبات ابری بهترین عملکرد را از جنبه های راحتی برنامه نویسی، مدیریت داده ها و بهره وری محاسباتی به طور همزمان، به ویژه هنگامی که مقدار زیادی از داده ها را پردازش می کند، ایفا می کند.
-1مقدمه
پردازش تصویر RS نقش مهمی در بسیاری از کاربردها ایفا می کند. یک موضوع عملی پردازش تصویر RS بهنگام بودن است. به عنوان مثال، اصلاح یک تصویر RS (30000*30000پیکسل) شامل تقریبأ ده ها میلیارد عملیات ممیز شناور است که تحت معماری محاسبات فعلی نیاز به چند ساعت حتی چند روز دارد که به پایان برسد. زمان پردازش نمی تواند الزامات این برنامه های خاص را تأمین کند [1]. محاسبات مستقل غیر ممکن است که قدرت چنین وظایف بهنگام را فراهم کند…
میتوانید از لینک ابتدای صفحه، مقاله انگلیسی را رایگان دانلود فرموده و چکیده انگلیسی و سایر بخش های مقاله را مشاهده فرمایید.